Dividing Polynomials: (4x^3 - 3x^2 + 5x + 6) / (x + 6)
This article will walk through the process of dividing the polynomial 4x^3 - 3x^2 + 5x + 6 by the binomial x + 6. We will use the long division method to achieve this.
Long Division Method
-
Set up the division: Write the dividend (4x^3 - 3x^2 + 5x + 6) inside the division symbol and the divisor (x + 6) outside.
_________ x + 6 | 4x^3 - 3x^2 + 5x + 6
-
Divide the leading terms: Divide the leading term of the dividend (4x^3) by the leading term of the divisor (x). This gives us 4x^2. Write this term above the division symbol.
4x^2 ______ x + 6 | 4x^3 - 3x^2 + 5x + 6
-
Multiply the divisor: Multiply the quotient term (4x^2) by the entire divisor (x + 6). This results in 4x^3 + 24x^2.
4x^2 ______ x + 6 | 4x^3 - 3x^2 + 5x + 6 4x^3 + 24x^2
-
Subtract: Subtract the result from the dividend. Be careful with the signs!
4x^2 ______ x + 6 | 4x^3 - 3x^2 + 5x + 6 4x^3 + 24x^2 ----------- -27x^2 + 5x
-
Bring down the next term: Bring down the next term from the dividend (5x).
4x^2 ______ x + 6 | 4x^3 - 3x^2 + 5x + 6 4x^3 + 24x^2 ----------- -27x^2 + 5x + 6
-
Repeat steps 2-5: Now, divide the leading term of the new dividend (-27x^2) by the leading term of the divisor (x). This gives us -27x. Write this term above the division symbol.
4x^2 - 27x ______ x + 6 | 4x^3 - 3x^2 + 5x + 6 4x^3 + 24x^2 ----------- -27x^2 + 5x + 6 -27x^2 - 162x
Multiply (-27x) by the divisor (x + 6), subtract, and bring down the next term (6).
4x^2 - 27x ______ x + 6 | 4x^3 - 3x^2 + 5x + 6 4x^3 + 24x^2 ----------- -27x^2 + 5x + 6 -27x^2 - 162x ----------- 167x + 6
-
Continue repeating steps 2-5: Divide 167x by x to get 167.
4x^2 - 27x + 167 _____ x + 6 | 4x^3 - 3x^2 + 5x + 6 4x^3 + 24x^2 ----------- -27x^2 + 5x + 6 -27x^2 - 162x ----------- 167x + 6 167x + 1002
Multiply 167 by (x + 6), subtract, and we are left with the remainder.
4x^2 - 27x + 167 _____ x + 6 | 4x^3 - 3x^2 + 5x + 6 4x^3 + 24x^2 ----------- -27x^2 + 5x + 6 -27x^2 - 162x ----------- 167x + 6 167x + 1002 ----------- -996
-
The result: We can now write the result of the division as:
4x^3 - 3x^2 + 5x + 6 = (x + 6)(4x^2 - 27x + 167) - 996
Or, in the form of quotient and remainder:
(4x^3 - 3x^2 + 5x + 6) / (x + 6) = 4x^2 - 27x + 167 - 996/(x + 6)
Conclusion
Using the long division method, we successfully divided the polynomial 4x^3 - 3x^2 + 5x + 6 by the binomial x + 6. The result is a quotient of 4x^2 - 27x + 167 and a remainder of -996.